The Gravitino in the corners of Moduli Space

String Phenomenology 2022, Liverpool

Based on [arXiV: 2104.10181]

★ Swampland Program: Can every apparently consistent EFT be embedded in a consistent theory of QG?

★ Swampland Program: Can every apparently consistent EFT be embedded in a consistent theory of QG?

Answer: No, but can try to find constraints satisfied by the EFT

Swampland Conjectures e.g. SDC, ADC, WGC, ...

★ Swampland Program: Can every apparently consistent EFT be embedded in a consistent theory of QG?

Answer: No, but can try to find constraints satisfied by the EFT

Swampland Conjectures e.g. SDC, ADC, WGC, ...

★ Lesson: 'We cannot go arbitrarily far from the original description'

★ Swampland Program: Can every apparently consistent EFT be embedded in a consistent theory of QG?

Answer: No, but can try to find constraints satisfied by the EFT

Swampland Conjectures e.g. SDC, ADC, WGC, ...

★ Lesson: 'We cannot go arbitrarily far from the original description'

Universal Behaviour → Too general!

INFINITE
TOWER OF
STATES

M4

M3

M2

M1

Special Direction: Gravitino mass, $m_{3/2}$ going to 0!!

★ Swampland Program: Can every apparently consistent EFT be embedded in a consistent theory of QG?

Answer: No, but can try to find constraints satisfied by the EFT

Swampland Conjectures e.g. SDC, ADC, WGC, ...

★ Lesson: 'We cannot go arbitrarily far from the original description'

Universal Behaviour → Too general!

Special Direction: Gravitino mass, $m_{3/2}$ going to 0!!

WGC

 \bigstar GDC: Theory of QG, $m_{3/2} \neq 0$, $m_{3/2} \rightarrow 0$ \Longrightarrow Tower of massless states

$$(M_{\rm P} = 1)$$

See also [Cribiori, Lust, Scalisi, '21] for related ideas

Outline

INTRODUCTION Recap of main Swampland Conjectures Stating the Conjecture. Relation to SDC, ADC &WGC THE GDC Type II(A) examples. Generalities. F-theory 'uplift'. III. EVIDENCE FOR THE GDC IV. PHENOMENOLOGY Main Implications for Part. Physics & Cosmology Quick Recap of main Results **SUMMARY**

Introduction: SDC

★ Swampland Distance Conjecture:

$$\mathcal{L}_{\rm kin} \sim \frac{1}{2} g_{ij} \partial_{\mu} \phi^i \ \partial^{\mu} \phi^j$$

Starting from a point P in moduli space, and moving to a point Q an infinite distance away, there appears a tower of states which becomes exponentially massless according to

$$\frac{m(Q)}{M_p} \sim \frac{m(P)}{M_p} e^{-\alpha d(P,Q)}$$

[Ooguri, Vafa, '06]

Introduction: SDC

Swampland Distance Conjecture:

Starting from a point P in moduli space, and moving to a point Q an infinite distance away, there appears a tower of states which becomes exponentially massless according to

$$\frac{m(Q)}{M_p} \sim \frac{m(P)}{M_p} e^{-\alpha d(P,Q)}$$

[Ooguri, Vafa, '06]

$$\mathcal{L}_{\rm kin} \sim \frac{1}{2} g_{ij} \partial_{\mu} \phi^i \ \partial^{\mu} \phi^j$$

'Universal Behaviour' near ∞ - distance points

 $R \to \infty$ Kaluza-Klein tower

 $R \rightarrow 0$ Winding tower

$$M_{\text{tower}} \sim e^{-\alpha d} \xrightarrow{d \to \infty} 0$$

e.g. KK tower
$$m_n^2 = n^2/R^2$$
, $n \in \mathbb{Z}$ $R \in \mathbb{Z}$ $\mathcal{L}_{kin} \sim \frac{(\partial R)^2}{R^2} \Rightarrow d = \log R + c$ with $m_n \sim e^{-d}$

Introduction: ADC

Anti de-Sitter Distance Conjecture: In a theory of quantum gravity with cosmological constant Λ there exist a tower of states that becomes light in the limit $\Lambda \to 0$, whose masses behave as

$$\frac{m}{M_p} \sim \left| \frac{\Lambda}{M_p^2} \right|^{\gamma}$$

[Lust, Palti, Vafa, '19]

Introduction: ADC

Anti de-Sitter Distance Conjecture: In a theory of quantum gravity with cosmological constant Λ there exist a tower of states that becomes light in the limit $\Lambda \to 0$, whose masses behave as

$$\frac{m}{M_p} \sim \left| \frac{\Lambda}{M_p^2} \right|^{\gamma}$$

[Lust, Palti, Vafa, '19]

*

 $\begin{cases} \bullet \ \gamma = 1/2 & \text{SUSY vacua} \\ \bullet \ \gamma \geq 1/2 & \text{non SUSY AdS} \\ \bullet \ \gamma \leq 1/2 & \text{dS vacua} \end{cases}$

Weak version supported by all known examples. Strong version in tension with e.g. DGKT

Introduction: ADC

Anti de-Sitter Distance Conjecture: In a theory of quantum gravity with cosmological constant Λ there exist a tower of states that becomes light in the limit $\Lambda \to 0$, whose masses behave as

$$\frac{m}{M_p} \sim \left| \frac{\Lambda}{M_p^2} \right|^{\gamma}$$

[Lust, Palti, Vafa, '19]

*

Weak version supported by all known examples. Strong version in tension with e.g. DGKT

Motivated from a generalization of the SDC *

if $m = M_{KK} \Rightarrow R_{\rm int} \sim R_{\rm AdS}$ with $-\Lambda \sim \frac{1}{(R_{\rm AdS})^2}$ e.g. Type IIB in AdS₅×S⁵

The Gravitino Distance Conjecture

In a supersymmetric theory with a non-vanishing gravitino mass $m_{3/2}$, in the limit $m_{3/2} \to 0$, a tower of states becomes light according to

$$\frac{m_{\mathrm{tower}}}{M_p} \sim \left(\frac{m_{3/2}}{M_p}\right)^{\delta}, \qquad 0 < \delta \le 1$$

IFocus on $\mathcal{N}=1$ supersymmetric theories here]

[Cribiori, Lust, Scalisi, '21] [Font, Herráez, Ibáñez, A.C., '21]

The Gravitino Distance Conjecture

In a supersymmetric theory with a non-vanishing gravitino mass $m_{3/2}$, in the limit $m_{3/2} \to 0$, a tower of states becomes light according to

$$\frac{m_{\mathrm{tower}}}{M_p} \sim \left(\frac{m_{3/2}}{M_p}\right)^{\delta}, \qquad 0 < \delta \le 1$$

[Focus on $\mathcal{N}=1$ supersymmetric theories here]

[Cribiori, Lust, Scalisi, '21] [Font, Herráez, Ibáñez, A.C., '21]

- \star Can approach $m_{3/2} \to 0$ in two qualitatively different ways
 - $m_{3/2} = m_{3/2}(\phi^i)$ with ϕ^i unfixed Minkowski no-scale
 - $m_{3/2} = m_{3/2}(\alpha^j)$ with α^j fixed AdS

$$\mathcal{M}_{sm} = \mathcal{M}_{discrete} \otimes \mathcal{M}_{continuous}$$

The Gravitino Distance Conjecture

In a supersymmetric theory with a non-vanishing gravitino mass $m_{3/2}$, in the limit $m_{3/2} \to 0$, a tower of states becomes light according to

$$\frac{m_{\text{tower}}}{M_p} \sim \left(\frac{m_{3/2}}{M_p}\right)^{\delta}, \qquad 0 < \delta \le 1$$

[Focus on $\mathcal{N}=1$ supersymmetric theories here]

[Cribiori, Lust, Scalisi, '21] [Font, Herráez, Ibáñez, A.C., '21]

- \star Can approach $m_{3/2} \to 0$ in two qualitatively different ways
 - $m_{3/2} = m_{3/2}(\phi^i)$ with ϕ^i unfixed Minkowski no-scale
 - $m_{3/2} = m_{3/2}(\alpha^j)$ with α^j fixed AdS

$$\mathcal{M}_{sm} = \mathcal{M}_{discrete} \otimes \mathcal{M}_{continuous}$$

★ Note that in 4d, N = 1 supergravity

$$(M_{\rm P} = 1) \quad m_{3/2} = e^{K/2} |W|$$

K = Kähler potential W =superpotential

★ Evidence for the Gravitino Conjecture from relations to other Swampland Conjectures

- **★ Evidence** for the Gravitino Conjecture from relations to other Swampland Conjectures
- **★** Relation to the AdS Distance Conjecture
 - SUSY vacua:

$$m_{3/2} = e^{K/2} |W|$$

$$\Lambda = -3e^K |W|^2$$

- **★ Evidence** for the Gravitino Conjecture from relations to other Swampland Conjectures
- **★** Relation to the AdS Distance Conjecture
 - **SUSY** vacua:

$$m_{3/2} = e^{K/2} |W|$$
 \longrightarrow $m_{\text{tower}} \sim m_{3/2}^{\delta} \sim |\Lambda|^{\delta/2}$ \longrightarrow $\gamma = \frac{\delta}{2}$

★ Evidence for the Gravitino Conjecture from relations to other Swampland Conjectures

★ Relation to the AdS Distance Conjecture

SUSY vacua:

$$m_{3/2} = e^{K/2} |W|$$
 \longrightarrow $m_{\text{tower}} \sim m_{3/2}^{\delta} \sim |\Lambda|^{\delta/2}$ \longrightarrow $\gamma = \frac{\delta}{2}$

★ Evidence for the Gravitino Conjecture from relations to other Swampland Conjectures

★ Relation to the AdS Distance Conjecture

SUSY vacua:

$$m_{3/2} = e^{K/2} |W|$$
 \longrightarrow $m_{\text{tower}} \sim m_{3/2}^{\delta} \sim |\Lambda|^{\delta/2}$ \longrightarrow $\gamma = \frac{\delta}{2}$

★ Relation to the Abscense of (generalized) global symmetries

$$T_{\text{mem}}^2 = 2e^K |W|^2 \sim e^2 Q_{mem}^2$$

★ Evidence for the Gravitino Conjecture from relations to other Swampland Conjectures

★ Relation to the AdS Distance Conjecture

SUSY vacua:

$$m_{3/2} = e^{K/2} |W| \longrightarrow m_{\text{tower}} \sim m_{3/2}^{\delta} \sim |\Lambda|^{\delta/2} \longrightarrow \gamma = \frac{\delta}{2}$$

$$\Lambda = -3e^{K} |W|^{2}$$

★ Relation to the Abscense of (generalized) global symmetries

$$T_{\text{mem}}^2 = 2e^K |W|^2 \sim e^2 Q_{mem}^2$$

 $m_{3/2} \rightarrow 0 \longrightarrow T_{\text{mem}} \rightarrow 0 \longrightarrow e \rightarrow 0 \longrightarrow \text{Symmetry becomes global}$

- ★ Evidence for the Gravitino Conjecture from relations to other Swampland Conjectures
- **★** Relation to the AdS Distance Conjecture

 $ADC \longleftrightarrow GDC$

SUSY vacua:

$$m_{3/2} = e^{K/2} |W| \longrightarrow m_{\text{tower}} \sim m_{3/2}^{\delta} \sim |\Lambda|^{\delta/2} \longrightarrow \gamma = \frac{\delta}{2}$$

$$\Lambda = -3e^{K} |W|^{2}$$

★ Relation to the Abscense of (generalized) global symmetries

$$T_{\text{mem}}^2 = 2e^K |W|^2 \sim e^2 Q_{mem}^2$$

 $m_{3/2} \rightarrow 0 \longrightarrow T_{\text{mem}} \rightarrow 0 \longrightarrow e \rightarrow 0 \longrightarrow \text{Symmetry becomes global}$

Magnetic WGC: $\Lambda_{UV} \lesssim eM_p \longrightarrow$ Tower of states

- \star Type IIA Toroidal Orientifold with fluxes $(T^6/\mathbb{Z}_2 \times \mathbb{Z}_2')$
- ★ Moduli → S, T, U

- \star Type IIA Toroidal Orientifold with fluxes $(T^6/\mathbb{Z}_2 \times \mathbb{Z}_2')$
- ★ Moduli → S, T, U

★ AdS susy/non-susy vacua (all moduli stabilised):

$$W = 3ieT + imT^3 + ih_0S - 3ihU$$

$$m_{KK} \simeq |\Lambda|^{7/18} \simeq m_{3/2}^{7/9}$$

[DeWolfe, Giryavets, Kachru, Taylor, '05] [Cámara, Font, Ibáñez, '05]

- \star Type IIA Toroidal Orientifold with fluxes $(T^6/\mathbb{Z}_2 \times \mathbb{Z}_2')$
- ★ Moduli → S, T, U

[DeWolfe, Giryavets, Kachru, Taylor, '05]

[Cámara, Font, Ibáñez, '05]

★ AdS susy/non-susy vacua (all moduli stabilised):

$$W = 3ieT + imT^3 + ih_0S - 3ihU$$
 $m_{KK} \simeq |\Lambda|^{7/18} \simeq m_{3/2}^{7/9}$

★ No-scale Minkowski vacua (one linear combination of S, T fixed, U unfixed):

$$W = e_0 + 3ieT + 3cT^2 + imT^3 + ih_0S m_{KK} \simeq m_{3/2}^{\delta} 1 \ge \delta \ge \frac{11}{15}$$

★ No-scale Minkowski vacua on twisted tori (S, T fixed, U unfixed):

$$W = 3cT^2 + imT^3 + ih_0S - 3aST$$
 $m_{KK} \simeq m_{3/2}^{2/3}$

★ General Lessons

★ General Lessons

★ General Lessons

II Can constrain further the range for δ

★ General Lessons

I
$$m_{3/2}^2 \sim \frac{({
m Tadpole})}{u^3}$$
 e.g. $hm, ac,...$ Complex structure

II Can constrain further the range for δ

Reliable EFT + Perturbative Regime
$$\longrightarrow$$
 $m_{3/2} \lesssim M_{KK} \lesssim M_s$ $e^{\phi}, e^{\phi_4} = \frac{e^{\phi}}{\sqrt{\mathcal{V}}} \lesssim 1$

III Also strings & membranes get light as $m_{3/2} \rightarrow 0$

Scales	$M_{\rm s} \ (su^3)^{-1/4}$	M_{KK} $(su^3t^2)^{-1/4}$	$M_{KK}^x \\ (stu)^{-1/2}$	M_{KK}^{y} $(ut^{1/2})^{-1}$
$T_{ m strings}$	$D4(B^0)$ s^{-1}	$\begin{array}{c} \mathrm{D4}(B^I) \\ u^{-1} \end{array}$	$NS5^a \\ t^{-1}$	
$T_{ m mem}$	$ \begin{array}{c c} Dp \\ (su^3t^{(5-p)})^{-1/2} \end{array} $	$ \begin{array}{c c} $	$ \begin{array}{c} \text{NS5}^I\\ (st^3u)^{-1/2} \end{array} $	

Table 1: Masses and tensions of KK states and branes in an isotropic $\mathbb{Z}_2 \times \mathbb{Z}_2'$ type IIA orbifold in Planck units.

 $\frac{1}{3} \le \delta \le 1$

★ 2 -moduli limits & F-theory

★ 2 –moduli limits & F-theory

Up to now: Large Volume Point (Type IIA) & Weak Coupling Limit

- ★ 2 –moduli limits & F-theory
 - Up to now: Large Volume Point (Type IIA) & Weak Coupling Limit
 - Can we be more general?

- ★ 2 –moduli limits & F-theory
 - Up to now: Large Volume Point (Type IIA) & Weak Coupling Limit
 - Can we be more general?
 - Want to make general statements for CY_3 orientifolds + extend to other ∞ dist. points

- ★ 2 –moduli limits & F-theory
 - Up to now: Large Volume Point (Type IIA) & Weak Coupling Limit
 - Can we be more general?
 - Want to make general statements for CY_3 orientifolds + extend to other ∞ dist. points
 - How? We (Limiting) Mixed Hodge Structures (MHS) [Grimm, Palti, Valenzuela,..., '18-'22]

- ★ 2 -moduli limits & F-theory
 - Up to now: Large Volume Point (Type IIA) & Weak Coupling Limit
 - Can we be more general?
 - Want to make general statements for CY_3 orientifolds + extend to other ∞ dist. points
 - How? We (Limiting) Mixed Hodge Structures (MHS) [Grimm, Palti, Valenzuela,..., '18-'22]

MHS well adapted to C.S. in Type IIB or Kähler in Type IIA

F-theory compactifications on (elliptic) CY_4

- ★ 2 -moduli limits & F-theory
 - Up to now: Large Volume Point (Type IIA) & Weak Coupling Limit
 - Can we be more general?
 - Want to make general statements for CY_3 orientifolds + extend to other ∞ dist. points
 - How? We (Limiting) Mixed Hodge Structures (MHS) [Grimm, Palti, Valenzuela,..., '18-'22]

MHS well adapted to C.S. in Type IIB or Kähler in Type IIA

F-theory compactifications on (elliptic) CY_4

▼ We will recover previous results in AdS & Mink

Evidence for the GDC

General Results

Scalar potential

Two scalar fields: s,t

$$V_{\text{IIA}} = \frac{1}{s^3} \left(\frac{V_{F_0} t^3}{s} + \frac{V_{F_2} t}{s} + \frac{V_{F_4}}{st} + \frac{V_{F_6}}{st^3} + \frac{V_{h_0} s}{t^3} + \frac{V_{a} s}{t} + V_{g_1} s t + V_{g_2} s t^3 - V_{\text{loc}} \right)$$

[Grimm, Li, Valenzuela,'20]

$$\delta = 7/9$$

Evidence for the GDC

General Results

Scalar potential

Two scalar fields: s,t

$$V_{\text{IIA}} = \frac{1}{s^3} \left(\frac{V_{F_0} t^3}{s} + \frac{V_{F_2} t}{s} + \frac{V_{F_4}}{st} + \frac{V_{F_6}}{st^3} + \frac{V_{h_0} s}{t^3} + \frac{V_{a} s}{t} + V_{g_1} s t + V_{g_2} s t^3 - V_{\text{loc}} \right)$$

[Grimm, Li, Valenzuela,'20]

Vacua at parametric control $\implies s \sim \rho^r, t \sim \rho^q$

AdS (non)SUSY & Mink

$$\delta = 7/9$$

- Tensionless membranes and strings II
 - Using MHS

$$\delta \ge \frac{1}{3}$$
 for CY₃

$$\delta \ge \frac{1}{4}$$
 for CY₄

Evidence for the GDC

General Results

Scalar potential

Two scalar fields: s,t

$$V_{\text{IIA}} = \frac{1}{s^3} \left(\frac{V_{F_0} t^3}{s} + \frac{V_{F_2} t}{s} + \frac{V_{F_4}}{st} + \frac{V_{F_6}}{st^3} + \frac{V_{h_0} s}{t^3} + \frac{V_a s}{t} + V_{g_1} st + V_{g_2} st^3 - V_{\text{loc}} \right)$$

[Grimm, Li, Valenzuela,'20]

Vacua at parametric control $\implies s \sim \rho^r, t \sim \rho^q$

AdS (non)SUSY & Mink

$$\delta = 7/9$$

- IITensionless membranes and strings
 - Using MHS

$$\delta \ge \frac{1}{3}$$
 for CY₃
 $\delta \ge \frac{1}{4}$ for CY₄

GDC vs SDC

CLAIM!!

Flat directions
$$\longrightarrow$$
 $m_{3/2} \rightarrow 0 \longrightarrow \infty$ - dist.

Toroidal models

$$\frac{1}{\sqrt{6}} \, \leq \, \alpha \, \leq \sqrt{\frac{3}{2}}$$

Generalization (MHS)

$$\frac{3}{\sqrt{2}} \ge \alpha \ge \frac{1}{\sqrt{6}}$$

★ Gravitino mass important for Part. Physics and Cosmology

- ★ Gravitino mass important for Part. Physics and Cosmology
- ★ Main Lesson: No arbitrary decoupling between $m_{3/2}$ and UV scales [Banks, Dixon, '88] [Antoniadis, Bachas et al, '20]

$$m_{3/2} \simeq \frac{M_{KK}^{1/\delta}}{M_{\rm P}^{(1-\delta)/\delta}} \ , \ \delta < 1$$

Maximal scale sep for smallest δ !

- ★ Gravitino mass important for Part. Physics and Cosmology
- \star Main Lesson: No arbitrary decoupling between $m_{3/2}$ and UV scales [Banks, Dixon, '88] [Antoniadis, Bachas et al, '20]

$$m_{3/2} \; \simeq \; \frac{M_{KK}^{1/\delta}}{M_{
m P}^{(1-\delta)/\delta}} \;\; , \;\; \delta \; < \; 1$$

Maximal scale sep for smallest δ !

 \bigstar Q: At which scale do we expect to find M_{KK} ?

- ★ Gravitino mass important for Part. Physics and Cosmology
- \star Main Lesson: No arbitrary decoupling between $m_{3/2}$ and UV scales

[Banks, Dixon, '88] [Antoniadis, Bachas et al, '20]

$$m_{3/2} \simeq \frac{M_{KK}^{1/\delta}}{M_{
m P}^{(1-\delta)/\delta}} \ , \ \delta < 1$$

Maximal scale sep for smallest δ !

- \bigstar Q: At which scale do we expect to find M_{KK} ?
 - Interesting values for $m_{3/2}$:
 - $m_{3/2} \sim 1 \text{ TeV}$ MSSM sugra \longrightarrow $M_{KK} \lesssim 10^8 \text{GeV}$
 - $m_{3/2} \sim 10^{10} \text{ GeV}$ ISS

 $\longrightarrow M_{KK} \lesssim 10^{13} \text{GeV}$

using
$$m_{3/2}^2 \simeq \frac{M_{KK}^3}{M_{\rm P}}$$

- ★ Gravitino mass important for Part. Physics and Cosmology
- **Main Lesson:** No arbitrary decoupling between $m_{3/2}$ and UV scales

[Banks, Dixon, '88] [Antoniadis, Bachas et al, '20]

$$m_{3/2} \; \simeq \; rac{M_{KK}^{1/\delta}}{M_{
m P}^{(1-\delta)/\delta}} \; \; , \; \; \delta \; < \; 1$$

Maximal scale sep for smallest δ !

- \bigstar Q: At which scale do we expect to find M_{KK} ?
 - ightharpoonup Interesting values for $m_{3/2}$:

•
$$m_{3/2} \sim 1 \text{ TeV}$$
 MSSM sugra \longrightarrow $M_{KK} \lesssim 10^8 \text{GeV}$

•
$$m_{3/2} \sim 10^{10} \text{ GeV}$$
 ISS

using
$$m_{3/2}^2 \simeq \frac{M_{KK}^3}{M_{
m P}}$$

$$\longrightarrow M_{KK} \lesssim 10^{13} \text{GeV}$$

 \star In Cosmology, EFT valid if $M_{KK}\gtrsim H$ \longrightarrow $H\lesssim m_{3/2}^{\delta}M_{
m P}^{1-\delta}$

 \star $m_{3/2} \rightarrow 0$ selects particular field directions

Typically KK tower

Also subleading towers from tensionless strings & membranes

 \star $m_{3/2} \rightarrow 0$ selects particular field directions

Typically KK tower

Also subleading towers from tensionless strings & membranes

★ Direct relation with WGC

3-form gauge couplings
$$\xrightarrow{m_{3/2} \to 0} 0$$
 \longrightarrow Singular Limit

 \star $m_{3/2} \rightarrow 0$ selects particular field directions

Typically KK tower

Also subleading towers from tensionless strings & membranes

★ Direct relation with WGC

3-form gauge couplings $\xrightarrow{m_{3/2} \to 0} 0$ \longrightarrow Singular Limit

 \star Evidence for GDC in Type IIA CY_3 Orientifolds

And also in F-theory CY_4 flux compactifications

★ Pheno implications

- **★** Pheno implications

Cosmology

$$H \lesssim m_{3/2}^{\delta} M_{
m P}^{1-\delta}$$

MSSM
$$m_{3/2} \sim 1 \text{ TeV} \longrightarrow M_{KK} \lesssim 10^8 \text{GeV}$$

$$m_{3/2} \sim 10^{10} \; {\rm GeV} \implies M_{KK} \lesssim 10^{13} {\rm GeV}$$

- $\bigstar \quad \text{Pheno implications} \qquad \qquad \underbrace{\qquad \qquad MSSM \qquad m_{3/2} \sim 1 \text{ TeV}} \qquad \Longrightarrow \qquad M_{KK} \lesssim 10^8 \text{GeV}$ $\qquad \qquad \blacksquare \quad \text{Particle Physics: two scenarios} \qquad \qquad \underbrace{\qquad \qquad MSSM \qquad m_{3/2} \sim 10^{10} \text{ GeV}} \qquad \Longrightarrow \qquad M_{KK} \lesssim 10^{13} \text{GeV}$
 - Cosmology $H \lesssim m_{3/2}^{\delta} M_{
 m P}^{1-\delta}$
- **★** Future Work

Examples in type IIA classical vacua Quantum vacua??

GDC consistent with full moduli stabilization, e.g. LVS, KKLT??

Study more examples (e.g. [Coudarchet, Dudas, Partouche, '21])

Thank you for your attention!

Contact: alberto.castellano@csic.es

Back-up: Toroidal Orientifold

- Type IIA CY_3 Orientifolds \longrightarrow N = 1, D = 4 Supergravity
 - Focus on toroidal example: $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2'$
- Three maximally symmetric type of vacua

AdS examples $(\Lambda < 0)$ AdS with metric fluxes \longrightarrow SUSY and non-SUSY sols DGKT-CFI (no metric fluxes) → SUSY and non-SUSY sols

 $\delta = 7/9$

 $\delta = 1$

Range for δ

